Midterm Exam

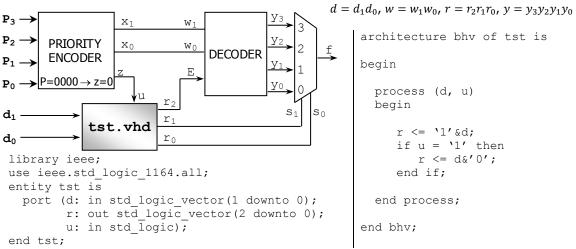
(October 20th @ 5:30 pm)

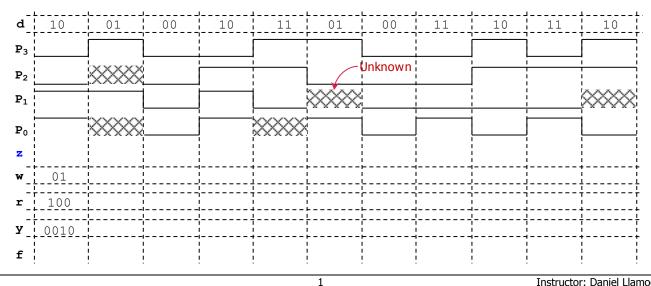
Presentation and clarity are very important! Show your procedure!

PROBLEM 1 (22 PTS)

a) Complete the following table. The decimal numbers are unsigned: (3 pts.)

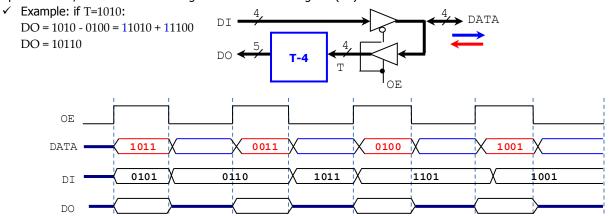
Decimal	BCD	BCD Binary			
			101011		
	000100101000				


b) Complete the following table. The decimal numbers are signed. Use the fewest number of bits in each case: (15 pts.)


REPRESENTATION							
Decimal	Sign-and-magnitude	1's complement	2's complement				
-31							
		101111					
			011013				
			10000				
		110					
	110011						

c) Convert the following decimal numbers to their 2's complement representations. (4 pts) -17.125

PROBLEM 2 (14 PTS)


• Complete the timing diagram of the following circuit. The VHDL code (tst.vhd) corresponds to the shaded circuit.

PROBLEM 3 (11 PTS)

• Complete the timing diagram (signals *D0* and *DATA*) of the following circuit. The circuit in the blue box computes the signed operation T-4, with the result having 5 bits. T is a 4-bit signed (2C) number.

PROBLEM 4 (10 PTS)

- A microprocessor has a memory space of 2 MB. Each memory address occupies one byte. 1 KB = 2^{10} bytes, 1 MB = 2^{20} bytes, 1 GB = 2^{30} bytes.
 - ✓ What is the address bus size (number of bits of the address) of this microprocessor?
 - ✓ What is the range (lowest to highest, in hexadecimal) of the memory space for this microprocessor? (1 pt.)
 - ✓ The figure (right) shows four memory chips that are placed in the given positions:
 - Complete the address ranges (lowest to highest, in hexadecimal) for each of the memory chips. (8 pts.)

Address	€ 8 bits
0x	0 512KB
0x	1 512KB
0x	2 512KB
0x	3 512KB

PROBLEM 5 (15 PTS)

- a) Perform the following additions and subtractions of the following unsigned integers. Use the fewest number of bits n to represent both operators. Indicate every carry (or borrow) from c_0 to c_n (or b_0 to b_n). For the addition, determine whether there is an overflow. For the subtraction, determine whether we need to keep borrowing from a higher bit. (6 pts) \checkmark 39 41
- b) The figure shows two 8-bit operands represented in 2's complement. Perform the 8-bit addition operation, i.e., complete all the carries and the summation bits. Also, indicate the corresponding decimal numbers for the 8-bit operands and the 8-bit result.

Does this 8-bit operation incur in overflow?	Yes	No
Value of the overflow bit: Value of carry out bit:		

Decimal values		C ₈	C ₇	c ₆	C ₅	C ₄	c ₃	C ₂	C ₁	0	
values	Į										
	=		1	1	0	1	0	1	1	1	4
	=		1	1	1	0	1	0	0	0	
	=										

c) Perform binary multiplication of the following numbers that are represented in 2's complement arithmetic. (4 pts)

PROBLEM 6 (10 PTS)

■ Sketch the circuit that computes |A - B|, where A, B are 4-bit <u>unsigned</u> numbers. For example, $A = 0101, B = 1101 \rightarrow |A - B| = |5 - 13| = 8$. You can only use full adders (or multi-bit adders) and logic gates. Your circuit must avoid overflow: design your circuit so that the result and intermediate operations have the proper number of bits.

PROBLEM 7 (18 PTS)

- Sketch the circuit that implements the following Boolean function: $f(a, b, c, d) = (c \oplus d) (\overline{a \oplus b})$
 - ✓ Using ONLY 2-to-1 MUXs (AND, OR, NOT, XOR gates are not allowed). (12 pts)
 - ✓ Using two 3-to-1 LUTs and a 2-to-1 MUX. Specify the contents of each of the 3-to-1 LUTs. (6 pts)